#include"../DP/monotone_minima.hpp"
vector<lint> concave_max_plus_convolution(const vector<lint>& a,const vec& b){
auto f=[&](lint i,lint j){
if(i-j<0||(int)a.size()<=j||(int)b.size()<=i-j)return INF;
else return -(a[j]+b[i-j]);
};
auto v=monotone_minima(a.size()+b.size()-1,b.size(),INF,f);
output(v);
vec res((int)a.size()+(int)b.size()-1);
rep(i,a.size()+b.size()-1){
res[i]=-f(i,v[i]);
}
return res;
};
#line 1 "DP/monotone_minima.hpp"
//monotoneな二変数関数に対して各行の最小値を求める
template<typename T,typename F>
vector<int> monotone_minima(int h,int w,T inf,F f){
vector<int>ret(h);
auto g=[&](auto g,int a,int b,int c,int d,T inf,auto f)->void{
int e=(a+b)/2,idx=0;
T mn=inf;
for(int i=c;i<d;++i){
if(mn>f(e,i))mn=f(e,i),idx=i;
}
ret[e]=idx;
if(b>a+1){
g(g,a,e,c,idx+1,inf,f);
g(g,e,b,idx,d,inf,f);
}
};
g(g,0,h,0,w,inf,f);
return ret;
}
#line 2 "math/concave_max_plus_convolution.hpp"
vector<lint> concave_max_plus_convolution(const vector<lint>& a,const vec& b){
auto f=[&](lint i,lint j){
if(i-j<0||(int)a.size()<=j||(int)b.size()<=i-j)return INF;
else return -(a[j]+b[i-j]);
};
auto v=monotone_minima(a.size()+b.size()-1,b.size(),INF,f);
output(v);
vec res((int)a.size()+(int)b.size()-1);
rep(i,a.size()+b.size()-1){
res[i]=-f(i,v[i]);
}
return res;
};