#pragma once
#include<vector>
#include<tuple>
#include<functional>
#include<ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/priority_queue.hpp>
#include"graph_template.hpp"
/**
* @brief ダイクストラ O(E+VlogE)
*/
template<typename T,typename F=std::less<T>,typename Add=std::plus<T>>
struct dijkstra{
int s;
std::vector<T> diff;
std::vector<int> par;
dijkstra(const graph_w<T>& list,int s,T zero=T(),T inf=std::numeric_limits<T>::max(),F f=F(),Add add=Add()):s(s){
int n=list.size();
diff.resize(n,inf);
par.resize(n,-1);
diff[s]=zero;
auto cmp=[f](auto s,auto t){return f(t.first,s.first);};
using pq_t=__gnu_pbds::priority_queue<std::pair<T,int>,decltype(cmp),__gnu_pbds::pairing_heap_tag>;
pq_t que(cmp);
typename pq_t::point_iterator node[n];
for(int i=0;i<n;i++)node[i]=que.push(std::make_pair(inf,i));
que.modify(node[s],std::make_pair(zero,s));
while(!que.empty()){
T p;
int now;
std::tie(p,now)=que.top();
if(p==inf)break;
que.pop();
for(auto d:list[now]){
auto next=add(p,d.second);
if(f(next,diff[d.first])){
diff[d.first]=next;
par[d.first]=now;
que.modify(node[d.first],std::make_pair(next,d.first));
}
}
}
}
T operator[](int idx){
return diff[idx];
}
bool reachable(int t){
return par[t]!=-1;
}
std::vector<int> get_path(int t){
std::vector<int>res;
while(t!=s){
res.push_back(t);
t=par[t];
}
res.push_back(s);
std::reverse(res.begin(),res.end());
return res;
}
};
#line 2 "graph_tree/dijkstra_fast.hpp"
#include<vector>
#include<tuple>
#include<functional>
#include<ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/priority_queue.hpp>
#line 4 "graph_tree/graph_template.hpp"
#include<iostream>
/**
* @brief グラフテンプレート
*/
using graph=std::vector<std::vector<int>>;
template<typename T>
using graph_w=std::vector<std::vector<std::pair<int,T>>>;
graph load_graph(int n,int m){graph g(n);for(int i=0;i<m;++i){int s,t;std::cin>>s>>t;--s;--t;g[s].push_back(t);g[t].push_back(s);}return g;}
graph load_digraph(int n,int m){graph g(n);for(int i=0;i<m;++i){int s,t;std::cin>>s>>t;--s;--t;g[s].push_back(t);}return g;}
graph load_graph0(int n,int m){graph g(n);for(int i=0;i<m;++i){int s,t;std::cin>>s>>t;g[s].push_back(t);g[t].push_back(s);}return g;}
graph load_digraph0(int n,int m){graph g(n);for(int i=0;i<m;++i){int s,t;std::cin>>s>>t;g[s].push_back(t);}return g;}
graph load_tree(int n){graph g(n);for(int i=0;i<n-1;++i){int s,t;std::cin>>s>>t;--s;--t;g[s].push_back(t);g[t].push_back(s);}return g;}
graph load_tree0(int n){graph g(n);for(int i=0;i<n-1;++i){int s,t;std::cin>>s>>t;g[s].push_back(t);g[t].push_back(s);}return g;}
graph load_treep(int n){graph g(n);for(int i=0;i<n-1;++i){int t;std::cin>>t;g[i+1].push_back(t);g[t].push_back(i+1);}return g;}
template<typename T>graph_w<T> load_graph_weight(int n,int m){graph_w<T> g(n);for(int i=0;i<m;++i){int s,t;T u;std::cin>>s>>t>>u;--s;--t;g[s].emplace_back(t,u);g[t].emplace_back(s,u);}return g;}
template<typename T>graph_w<T> load_digraph_weight(int n,int m){graph_w<T> g(n);for(int i=0;i<m;++i){int s,t;T u;std::cin>>s>>t>>u;--s;--t;g[s].emplace_back(t,u);}return g;}
template<typename T>graph_w<T> load_graph0_weight(int n,int m){graph_w<T> g(n);for(int i=0;i<m;++i){int s,t;T u;std::cin>>s>>t>>u;g[s].emplace_back(t,u);g[t].emplace_back(s,u);}return g;}
template<typename T>graph_w<T> load_digraph0_weight(int n,int m){graph_w<T> g(n);for(int i=0;i<m;++i){int s,t;T u;std::cin>>s>>t>>u;g[s].emplace_back(t,u);}return g;}
template<typename T>graph_w<T> load_tree_weight(int n){graph_w<T> g(n);for(int i=0;i<n-1;++i){int s,t;T u;std::cin>>s>>t>>u;--s;--t;g[s].emplace_back(t,u);g[t].emplace_back(s,u);}return g;}
template<typename T>graph_w<T> load_tree0_weight(int n){graph_w<T> g(n);for(int i=0;i<n-1;++i){int s,t;T u;std::cin>>s>>t>>u;g[s].emplace_back(t,u);g[t].emplace_back(s,u);}return g;}
template<typename T>graph_w<T> load_treep_weight(int n){graph_w<T> g(n);for(int i=0;i<n-1;++i){int t;T u;std::cin>>t>>u;g[i+1].emplace_back(t,u);g[t].emplace_back(i+1,u);}return g;}
#line 8 "graph_tree/dijkstra_fast.hpp"
/**
* @brief ダイクストラ O(E+VlogE)
*/
template<typename T,typename F=std::less<T>,typename Add=std::plus<T>>
struct dijkstra{
int s;
std::vector<T> diff;
std::vector<int> par;
dijkstra(const graph_w<T>& list,int s,T zero=T(),T inf=std::numeric_limits<T>::max(),F f=F(),Add add=Add()):s(s){
int n=list.size();
diff.resize(n,inf);
par.resize(n,-1);
diff[s]=zero;
auto cmp=[f](auto s,auto t){return f(t.first,s.first);};
using pq_t=__gnu_pbds::priority_queue<std::pair<T,int>,decltype(cmp),__gnu_pbds::pairing_heap_tag>;
pq_t que(cmp);
typename pq_t::point_iterator node[n];
for(int i=0;i<n;i++)node[i]=que.push(std::make_pair(inf,i));
que.modify(node[s],std::make_pair(zero,s));
while(!que.empty()){
T p;
int now;
std::tie(p,now)=que.top();
if(p==inf)break;
que.pop();
for(auto d:list[now]){
auto next=add(p,d.second);
if(f(next,diff[d.first])){
diff[d.first]=next;
par[d.first]=now;
que.modify(node[d.first],std::make_pair(next,d.first));
}
}
}
}
T operator[](int idx){
return diff[idx];
}
bool reachable(int t){
return par[t]!=-1;
}
std::vector<int> get_path(int t){
std::vector<int>res;
while(t!=s){
res.push_back(t);
t=par[t];
}
res.push_back(s);
std::reverse(res.begin(),res.end());
return res;
}
};