うしさんからパクってきた最小費用流
(graph_tree/min_cost_flow_ei.hpp)
Code
#pragma once
/**
* @brief うしさんからパクってきた最小費用流
*/
template <typename flow_t, typename cost_t>
struct PrimalDual{
const cost_t INF;
struct edge{
int to;
flow_t cap;
cost_t cost;
int rev;
bool isrev;
};
vector<vector<edge>> graph;
vector<cost_t> potential, min_cost;
vector<int> prevv, preve;
PrimalDual(int V) : graph(V), INF(numeric_limits<cost_t>::max()) {}
void add_edge(int from, int to, flow_t cap, cost_t cost){
graph[from].emplace_back((edge){to, cap, cost, (int)graph[to].size(), false});
graph[to].emplace_back((edge){from, 0, -cost, (int)graph[from].size() - 1, true});
}
cost_t min_cost_flow(int s, int t, flow_t f){
int V = (int)graph.size();
cost_t ret = 0;
using Pi = pair<cost_t, int>;
priority_queue<Pi, vector<Pi>, greater<Pi>> que;
potential.assign(V, 0);
preve.assign(V, -1);
prevv.assign(V, -1);
while (f > 0)
{
min_cost.assign(V, INF);
que.emplace(0, s);
min_cost[s] = 0;
while (!que.empty()){
Pi p = que.top();
que.pop();
if (min_cost[p.second] < p.first)
continue;
for (int i = 0; i < int(graph[p.second].size()); i++){
edge &e = graph[p.second][i];
cost_t nextCost = min_cost[p.second] + e.cost + potential[p.second] - potential[e.to];
if (e.cap > 0 && min_cost[e.to] > nextCost){
min_cost[e.to] = nextCost;
prevv[e.to] = p.second, preve[e.to] = i;
que.emplace(min_cost[e.to], e.to);
}
}
}
if (min_cost[t] == INF)return -1;
for (int v = 0; v < V; v++)potential[v] += min_cost[v];
flow_t addflow = f;
for (int v = t; v != s; v = prevv[v]){
addflow = min(addflow, graph[prevv[v]][preve[v]].cap);
}
f -= addflow;
ret += addflow * potential[t];
for (int v = t; v != s; v = prevv[v]){
edge &e = graph[prevv[v]][preve[v]];
e.cap -= addflow;
graph[v][e.rev].cap += addflow;
}
}
return ret;
}
void output(){
for (int i = 0; i < graph.size(); i++){
for (auto &e : graph[i]){
if (e.isrev) continue;
auto &rev_e = graph[e.to][e.rev];
cout << i << "->" << e.to << " (flow: " << rev_e.cap << "/" << rev_e.cap + e.cap << ")" << endl;
}
}
}
};
#line 2 "graph_tree/min_cost_flow_ei.hpp"
/**
* @brief うしさんからパクってきた最小費用流
*/
template <typename flow_t, typename cost_t>
struct PrimalDual{
const cost_t INF;
struct edge{
int to;
flow_t cap;
cost_t cost;
int rev;
bool isrev;
};
vector<vector<edge>> graph;
vector<cost_t> potential, min_cost;
vector<int> prevv, preve;
PrimalDual(int V) : graph(V), INF(numeric_limits<cost_t>::max()) {}
void add_edge(int from, int to, flow_t cap, cost_t cost){
graph[from].emplace_back((edge){to, cap, cost, (int)graph[to].size(), false});
graph[to].emplace_back((edge){from, 0, -cost, (int)graph[from].size() - 1, true});
}
cost_t min_cost_flow(int s, int t, flow_t f){
int V = (int)graph.size();
cost_t ret = 0;
using Pi = pair<cost_t, int>;
priority_queue<Pi, vector<Pi>, greater<Pi>> que;
potential.assign(V, 0);
preve.assign(V, -1);
prevv.assign(V, -1);
while (f > 0)
{
min_cost.assign(V, INF);
que.emplace(0, s);
min_cost[s] = 0;
while (!que.empty()){
Pi p = que.top();
que.pop();
if (min_cost[p.second] < p.first)
continue;
for (int i = 0; i < int(graph[p.second].size()); i++){
edge &e = graph[p.second][i];
cost_t nextCost = min_cost[p.second] + e.cost + potential[p.second] - potential[e.to];
if (e.cap > 0 && min_cost[e.to] > nextCost){
min_cost[e.to] = nextCost;
prevv[e.to] = p.second, preve[e.to] = i;
que.emplace(min_cost[e.to], e.to);
}
}
}
if (min_cost[t] == INF)return -1;
for (int v = 0; v < V; v++)potential[v] += min_cost[v];
flow_t addflow = f;
for (int v = t; v != s; v = prevv[v]){
addflow = min(addflow, graph[prevv[v]][preve[v]].cap);
}
f -= addflow;
ret += addflow * potential[t];
for (int v = t; v != s; v = prevv[v]){
edge &e = graph[prevv[v]][preve[v]];
e.cap -= addflow;
graph[v][e.rev].cap += addflow;
}
}
return ret;
}
void output(){
for (int i = 0; i < graph.size(); i++){
for (auto &e : graph[i]){
if (e.isrev) continue;
auto &rev_e = graph[e.to][e.rev];
cout << i << "->" << e.to << " (flow: " << rev_e.cap << "/" << rev_e.cap + e.cap << ")" << endl;
}
}
}
};
Back to top page